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Drug-metabolizing cytochrome P450s in the brain
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Drug metabolism is traditionally thought of as a func-
tion of the liver. Although this remains essentially true,
there is now evidence that drug-metabolizing enzymes
are also located in extrahepatic tissues, such as the gut
and lungs, where they have important functions. This
commentary assesses the current knowledge of the
presence and possible functions of drug-metabolizing
cytochrome P450 enzymes in the central nervous sys-
tem (CNS). As the brain is the target of centrally acting
drugs, this review will also describe potential ways in
which CNS expression may be particularly important
in determining an individual’s response to centrally
acting substances.

Cytochrome P450 enzymes (CYPs) are phase I en-
zymes that are involved in the oxidative activation or
deactivation of both endogenous and exogenous com-
pounds such as drugs, environmental toxins and di-
etary constituents. Each CYP family member is desig-
nated by a number, each subfamily by a letter and each
member of the subfamily by a second number (e.g.,
CYP2D6). This article will focus on the principal drug-
metabolizing CYPs, most of which belong to families 1
to 4. These are mainly hepatic, but many of these CYPs
also exist in other organs, including the brain. Much

attention has been paid to CYPs in the liver because of
their predominance there and because of the influence
of drug-metabolizing CYPs on plasma levels of thera-
peutic drugs. 

Brain CYPs were originally reported to occur at only
1% of the levels found in liver,1 but many of these early
reports treated the brain as a homogeneous organ,
which is not the case. Brain regions differ tremen-
dously in their cellular composition, cell density and
function, and we now know that the expression pattern
of brain CYPs is also extremely varied.2 From some of
our own studies, it is clear that the levels of CYPs in
specific neurons can be as high or higher than levels in
hepatocytes.3 Although it is unlikely that brain CYPs
contribute to overall clearance of xenobiotics, they are
able to metabolize a variety of compounds, including
many drugs that cross the blood–brain barrier to pro-
duce their pharmacological effects within the brain.
Given their highly localized expression and extreme
sensitivity to environmental inducers, they may con-
tribute substantially to much of the observed interindi-
vidual variation in response to centrally acting drugs.
They may also be responsible for some of the variation
seen in side effects and toxicities of drugs that enter the
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CNS. Brain CYPs are also thought to participate in the
metabolism of some neurotransmitters, endogenous
steroids and neurosteroids; this aspect of their function
may be important in influencing neural development
and integration of overall brain function.

Identification and localization in the brain

Members of most CYP families have been identified in
animal and human brains by a variety of methods.
There is extensive information available on the regional
and cellular distribution of most CYP families in ro-
dent brain, but very little is known about human brain;
only CYP2D6 has been mapped throughout the human
brain.4,5 In general, CYPs are distributed heteroge-
neously among different brain regions and are found
in cell bodies and processes of neurons and often also
in glial cells. Many of the CYP subfamilies have been
observed at the blood–brain interface and in circum-
ventricular organs (regions of the brain that are not
protected by the blood–brain barrier)6,7 such as the
choroid plexus and posterior pituitary (e.g., CYP1A,8–10

CYP2B11 and CYP2D12,13). This may have evolved as a
protection against harmful xenobiotics, but there is the
caveat that these regions may also be exposed to toxic
drug and steroid metabolites produced by local CYP
activity. In rodents, CYP1A1 appears to be primarily
expressed in regions of the blood–brain barrier,8–10 but it
has also been detected in other parenchymal brain
regions.9,14–16 CYP1A1 has also been identified in human
brain17,18 and localized to the cortical regions, midbrain,
basal ganglia and cerebellum.19 CYP1A2 has been
found in most brain regions examined.10,14,16 CYP1B1 has
been shown to be present in various human brain
regions, including the temporal lobe, putamen and
blood–brain interface areas;19–22 in most cases, CYP1B1
protein is localized to the nucleus.23 CYP2B enzymes
are heterogeneously distributed among brain regions
in rodents,3,16,24 with somewhat higher levels in evolu-
tionarily older brain regions and areas of the
blood–brain barrier, such as arachnoid, choroid plexus
and other vascular areas.3,11,25 This enzyme is primarily
neuronal, with some astrocytic distribution in areas
rich in neuronal fibre tracts (e.g., olfactory bulbs and
corpus callosum).11,26 CYP2B6 has been demonstrated in
human brain,27–29 and we have shown that its distribu-
tion is region-specific, with higher levels in the cerebel-
lum and basal ganglia and lower levels in the cortical
regions and hippocampus, and that its expression is

primarily neuronal.30 CYP2C is expressed constitu-
tively in both rodent31–33 and human brain;19,34 in rats,
CYP2C13 is expressed across a wide range of brain
regions, including the basal ganglia, cortex, hippocam-
pus and olfactory areas.33–35 The expression of rodent
CYP2D mRNA and protein is region-specific, with
higher levels in areas such as the cerebellum, hip-
pocampus and olfactory bulbs and lower levels in
spinal cord, pons and medulla; it is expressed in both
neuronal and glial cells.12,13 In addition, individual
CYP2D subfamily members (CYP2D1–6, 18) have dif-
ferent patterns of distribution among brain regions.12,36

CYP2D6 has been identified in human brain,4,28,37 and is
expressed primarily in neurons of the cerebral cortex
and hippocampus and in the Purkinje cells of the cere-
bellum.4,5 The ethanol-metabolizing enzyme CYP2E1 is
expressed constitutively in both rodent38–41 (Lisa Angela
Howard, MSc, and R.F.T., unpublished observations,
University of Toronto, 2002) and human brains.14,19,42

Expression is heterogeneous among brain regions and
prominent in neurons of the cerebral cortex, dentate
gyrus and the CA1, CA2 and CA3 regions of the hip-
pocampus and in Purkinje cells and their processes in
the cerebellum (L.A.H., S.L.M. and R.F.T., unpublished
observations, 2002).42 CYP2E1 expression and catalytic
function have been demonstrated also in prenatal
human brain, and this has implications in fetal alcohol
syndrome.43,44 Members of the CYP3A subfamily of en-
zymes are thought to metabolize approximately 50% of
drugs in therapeutic use, and although they have been
demonstrated in rodent45,46 and human brain,19,47 very
little is known of their distribution. Human CYP3A5
has been localized in cells of the pituitary, where it is
thought to be involved in the regulation of growth hor-
mone secretion.48 Members of the CYP4A and CYP4F
subfamilies have been identified in rodent brain,49 and
subfamily members CYP4A2, CYP4A3 and CYP4A8
have been shown to have different distributions within
the brain.50

Subcellular localization

In the liver, CYPs are located primarily in the endoplas-
mic reticulum or microsomal cell fraction. There is good
evidence that some CYPs are also expressed in the
plasma membrane,51–53 the mitochondria54 and in several
of the continuous intracellular membrane compart-
ments.55,56 In the brain, it was observed early on that
much of the CYP activity was found in the mitochondr-
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ial subcellular fraction.57 Although drug-metabolizing
CYPs are traditionally found in the endoplasmic reticu-
lum, a number of more recent studies have also shown
the presence, inducibility and activity of several forms
of drug-metabolizing CYPs in brain mitochondrial
membrane fractions.12,58–60 Two mitochondria-specific
functional forms of CYP1A1 that are NH2-terminal-
cleaved versions of microsomal CYP1A1 have been
identified in rat liver61 and brain.62 The protein struc-
tures of these P450MT2 forms are altered, allowing for
specific targeting to the mitochondrial membrane. We
and others have also demonstrated the expression of
CYP enzymes in neuronal processes devoid of endo-
plasmic reticular membranes, particularly in the den-
dritic trees of Purkinje cells in the cerebellum.30 The
subcellular localization further emphasizes the unique-
ness of brain-expressed drug-metabolizing CYPs com-
pared with their hepatic counterparts.

Cautions in the identification of brain CYPs

Studies of the regional and cellular localization of CYPs
in the brain do not always agree, both with respect to
expression levels in brain regions and expression in
specific cell types (i.e., neuronal or glial). There may be
several explanations for this, one being the use of dif-
ferent techniques. Some studies report CYP mRNA
levels only using reverse transcription – polymerase
chain reaction (RT–PCR) or in situ hybridization, and
some report CYP protein only using immunoblotting
or immunocytochemistry techniques. Differences be-
tween findings using mRNA and protein may reflect
that mRNA levels do not always predict protein levels
because of variable rates of translation as well as other
issues of mRNA and protein regulation (e.g., variable
synthesis and degradation). In addition, in the CNS a
protein and its mRNA are not necessarily expressed in
the same part of the cell, and in some neurons with
long axons projecting to other brain regions, the CYP
mRNA can be located in the cell body and the CYP
protein at the nerve terminal several millimetres away.
Another cause of discrepancy can be that mRNAs are
quite labile and so degradation, due to delays in re-
moving and freezing brains, may differentially affect
mRNA and protein. These discrepancies all point to
the necessity of using multiple techniques for the de-
tection and quantification of brain CYPs.

There are also disagreements between studies using
the same techniques, such as immunoblotting or im-

munocytochemistry, that rely on the use of specific
antibodies. The many antibodies and antisera available
for the detection of CYPs vary greatly in their degree of
specificity. In many cases, the use of antibodies with
differing cross-reactivities and antigenic specificity is
the source of discrepancy between reports. Most anti-
bodies are developed against purified hepatic CYPs,
partial peptides or ex vivo expressed CYPs, and the use
of these antibodies assumes that brain CYPs are
immunologically identical to hepatic CYPs, which may
not necessarily be so. This has been a source of criti-
cism of the literature on CYPs in the brain,63 much of
which incorporates the use of specific antibodies. How-
ever, this does not negate the presence of CYPs in the
brain; our increasing knowledge of the genes and pro-
tein structures of brain CYPs can account for many of
the observed differences between hepatic and brain
CYPs from the same family. We know now that in
many CYP families, specific members are expressed at
higher levels in brain than in liver, with the same or
similar catalytic properties to their hepatic counter-
parts (e.g., CYPs 2D4 and 2D18 in rat brain).64–66

Induction

It has long been known that brain CYPs are inducible
by many of the same compounds that induce hepatic
CYPs.24,67 For example, phenobarbital can induce brain
CYP2B1/216,68 and CYP3A1,68 beta-napthoflavin,10,16,62 3-
methylcholanthrene69 and 2,3,7,8-tetrachlorodibenzo-p-
dioxin can induce CYP1A1,9 phenytoin can induce
CYP2B1/2,70,71 steroid hormones can induce CYP2D72

and ethanol can induce CYP2E138,39,42,73–75 (L.A.H and
R.F.T., unpublished observations, 2002) and members
of the CYP2C, CYP4A and CYP2D subfamilies.76 In
some cases, a compound’s inductive effect is different
in the liver and brain; for example ethanol induces
CYP2B1 in rat liver but not in brain,77 whereas nicotine
induces CYP2B1 in rat brain but not in liver.3

The sensitivity of brain CYPs to regulation by endoge-
nous and exogenous compounds may account for, in
part, some of the variability in individual response to
centrally acting drugs and some individuals’ increased
susceptibility to neurotoxic effects. There are several
mechanisms whereby induction of brain CYPs can be
detrimental. Increased CYP can modulate or reroute the
metabolism of endogenous compounds such as testos-
terone by phenytoin-induced CYP2B.71 High levels of
CYP activity are associated with cellular oxidative stress.
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High CYP2E1 activity is known to produce toxic free
oxygen radicals, and ethanol induction of CYP2E1 has
been shown to result in increased oxygen radical forma-
tion, oxidative stress and lipid peroxidation in rat brain75

and cultured astrocytes.74 In post-mortem brains of alco-
hol dependent individuals, we have observed intense
immunological staining of CYP2E1 in cerebellum Pur-
kinje cells and their processes (unpublished observations,
2002) and intense immunological staining of CYP2D6 in
Purkinje cells and in hippocampal neurons compared
with nonalcohol dependents;4 both of these brain re-
gions are highly susceptible to damage during chronic
ethanol consumption.78 Nicotine can also induce brain
CYP2E179 (L.A.H. and R.F.T., unpublished observations,
2002), and given that many who are dependent on al-
cohol are also smokers, this effect of nicotine may con-
tribute not only to central tolerance to alcohol in these
individuals but also to an increased susceptibility to
neuronal damage. Nicotine induces the nicotine-metab-
olizing enzyme CYP2B1 in rat brain,3,80 and similarly, in
human brain, nicotine-metabolizing CYP2B6 is higher in
some brain regions of smokers than nonsmokers.30

Many CYPs activate carcinogens and produce toxic
metabolites. Both CYP2E1 and CYP2B6 activate tobacco-
smoke procarcinogens,81 and CYP2B6 metabolizes a
number of xenobiotics, such as methylenedioxymetham-
phetamine (MDMA or “ecstasy”),82,83 cocaine84,85 and the
insecticide methyl-parathion86 to toxic metabolites; this
suggests that smokers, by virtue of increased CYP2B6
enzyme activity in specific brain regions and cells, may
be more susceptible to neuronal pathologies.

Metabolism by brain CYPs

Although it is clear from the literature that there are
some brain-specific forms of CYPs, some forms in the
brain are identical to their hepatic isoforms (albeit at
lower concentrations). What, then, is their metabolic
importance? Brain CYPs have the ability to metabolize a
range of endogenous and exogenous compounds, but
because of the low levels of CYPs in the brain, meta-
bolic studies have been technically challenging. CYP
enzymatic activity has been reported in both rodent24,87,88

and human28,89,90 brain, but detailed kinetic studies on
specific CYPs and their substrates are scarce. In rat
brain, CYP2D1 kinetics for dextromethorphan in differ-
ent brain regions have been described,91 and the brain-
specific CYP2D18 has been partially purified, and its
activity toward the antidepressants imipramine and

desipramine has been characterized.64,92 In addition,
brain microsomes have been shown to metabolize the
same probe substrates used to assess specific hepatic
CYP activity (e.g., 7-pentoxyresorufin for
CYP2B1/2,80,93,94 7-ethoxyresorufin for CYP1A1/2,79,93 N-
nitrosodimethylamine and p-nitrophenol for CYP2E144,73

and dextromethorphan for CYP2D)91,95,96 and substrates
of known hepatic CYPs (e.g., bufuralol,97 imipramine,98

desmethylimipramine,99 amitriptyline,96 nicotine,100,101

phencyclidine,102 amphetamines103,104 and neurotoxins
such as organophosphorous insecticides105).

Exogenous substrates

Most evidence to date suggests that metabolic charac-
teristics of brain CYPs are similar to their hepatic
forms, with some exceptions where CYP forms exist in
brain but not in liver. However, because of their low
levels of expression in brain, it is unlikely that brain
CYPs contribute to the overall metabolism and clear-
ance of xenobiotics. Rather, their importance lies in
their localization in specific brain regions and brain
cells, where they are most likely involved in the in situ
metabolism of xenobiotic drugs and toxins and en-
dogenous neurotransmitters and neurosteroids. Plas-
ma levels of drugs are not always good indicators of
brain levels and therapeutic outcome,106 and for neuro-
leptics and antidepressants, the correlations between
blood levels and therapeutic effects are often poor.107

CYP2D6 metabolizes many centrally acting psycho-
active drugs, such as tricyclic antidepressants, selective
serotonin reuptake inhibitors, neuroleptics and anti-
convulsants.108–110 Metabolism in the brain by this en-
zyme may have a profound influence on the on- and
off-set of action and therapeutic efficiency of some of
these drugs. For example, Chen and colleagues103 have
shown that at least the initial analgesic effects of
codeine are due to morphine produced in the brain,
not in the liver. In addition, as has been modelled by
Britto et al,111 the interindividual variation in response
to these drugs, which is independent of plasma levels,
could reflect interindividual differences in localized
brain CYP2D6 metabolism.

Endogenous substrates

Neurotransmitters

An important role ascribed to brain CYPs is the metab-



olism of endogenous neurally derived or acting com-
pounds, such as neurotransmitters and neurosteroids.
Although CYP2D6 does not have a primary role in the
synthesis of dopamine, it may have a modulatory ef-
fect on dopamine metabolism in the brain. CYP2D6
was found in close association with the dopamine
transporter,112 CYP2D enzymes have been found in
dopaminergic cells in the rat substantia nigra36 and
CYP2D6113,114 and rat brain-specific CYP2D18115 have
been implicated in dopamine metabolism. CYP2E1 is
also found in dopaminergic cells of the rat substantia
nigra,35 and, recently, it was suggested that this enzyme
may also be involved in dopamine metabolism.116 Ge-
netic polymorphisms in CYP2D6 have been suggested
to be associated with smoking behaviour,117,118 and this
modification may occur through the involvement of
CYP2D6 in the dopaminergic pathway. Genetic defects
in CYP2D6 have been associated with Parkinson’s dis-
ease,119–122 which may be linked to the role of CYP2D6 in
dopamine metabolism in the brain.123,124 Genetic var-
iation in CYP2D6 has also been linked to Alzheimer’s
disease,125–127 but it is still unclear whether the genetic
variations are associated with the action of these en-
zymes in the brain or the liver. 

Not only may CYPs contribute to the metabolism of
neurotransmitters, but neurotransmitters, their precur-
sors and their metabolites may have a modulatory ef-
fect on the catalytic activity of CYPs in the brain. It has
been shown that tryptamine inhibits CYP2D6-medi-
ated dextromethorphan O-demethylation,114 serotonin
and tryptamine inhibit CYP1A2 phenacetin O-deethyl-
ase activity17 and 5-hydroxytryptamine and adrenaline
inhibit diclofenac 4-hydroxylation by CYP2C9128 in
vitro. The effect of these indoleamines and catechol-
amines on CYP activity suggests that in the brain local
drug metabolism by CYPs may be modulated or reg-
ulated by endogenous neurotransmitters, their precur-
sors or metabolites and this may play a role in the ob-
served interindividual variability in drug response. 

Arachidonic acid

Arachidonic acid (AA) is metabolically activated to
many endogenous compounds by cyclooxygenases,
lipoxygenases and CYPs (e.g., CYP1A, 2B, 2C, 2D, 2E, 2J
and 4A subfamilies.32,115,129–135). The main products of CYP
metabolism are epoxygenase metabolites (14,15-, 11,12-,
8,9- and 5,6-epoxyeicosatrienoic acids or EETs), ω-ter-
minal hydroxylase metabolites (20-, 19-, 18-, 17- and 16-

hydroxyeicosatrienoic acids or HETEs) and lipoxyge-
nase-like metabolites 15-, 12-, 9-, 8- and 5-HETEs.136

EETs are metabolized primarily by the CYP2C subfam-
ily32,129,133 and possibly by CYP2D enzymes.115 They are
produced in astrocytes associated with cerebral mi-
crovessels and are involved in the local regulation of
cerebral blood flow.137–143 EETs are also produced in the
pituitary and hypothalamus, where they stimulate the
release of neuropeptides.144–148 HETEs are formed pri-
marily by the CYP4A subfamily in cerebral arter-
ies50,132,143,149 and are potent vasoactive agents.50,141 Metabo-
lism of AA by CYPs in the brain could have profound
effects on cerebral blood flow, affecting cerebral func-
tion and contributing to cerebrovascular pathologies,
and can also affect the release of neurohormones that
influence many physiological functions.

Neurosteroids

Steroid hormones, which have a profound influence on
the growth and development of the brain, are mainly
synthesized in the adrenals and gonads and readily
cross the blood–brain barrier. The brain also has the
capacity to synthesize steroids, known as neuroster-
oids.2,150–152 Endogenous neurosteroids contribute to the
control of brain function and behaviour and may be
involved in mental illnesses and in the activation of the
immune system. Clinical studies have shown that neu-
rosteroids are implicated in fatigue during pregnancy,
post-partum depression, catamenial epilepsy  and de-
pressive and dementia disorders.150 The initial stage of
neurosteroidogenesis, the conversion of cholesterol to
pregnenolone, is well characterized and is catalyzed by
cytochrome P450 side-chain cleavage, the product of the
CYP11A1 gene, and this can occur in both glial cells and
in neurons.151,153–155 Pregnenolone and dehydroepiandro-
sterone (DHEA) are further metabolized and inactivated
in situ by a variety of enzymes, including CYPs, through
the androgenic pathway to androstenedione, testos-
terone and estradiol and their derivatives, and through
progesterone to potent neurosteroids such as 3α,5α-
tetrahydroprogesterone. Cytochrome P450 aromatase,
the product of the CYP19 gene, is important in the con-
version of androgens to estrogens;150 its activity and reg-
ulation have also been well characterized.

Members of the drug-metabolizing CYP subfamilies
may also contribute in a modulatory capacity to the an-
drogenic pathway. CYP1A can metabolize 17 β-estra-
diol,156 DHEA and pregnenolone in mouse brain.157–159
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CYP2B and possibly CYP2C can metabolize testos-
terone in rat brain,71 and CYP2D can metabolize pro-
gesterone in rat brain.160 CYP3A can metabolize testos-
terone in rat and mouse brain,45,71 CYP3A9, a
female-specific rat brain isoform of CYP3A, can metab-
olize testosterone, androstenedione, DHEA and, most
efficiently, progesterone, a major female sex hor-
mone.161 CYP7B, a brain-specific CYP found primarily
in the hippocampus of rat and mouse, is able to metab-
olize DHEA and pregnenolone.162–164

Although the drug-metabolizing CYPs are not the
primary CYPs involved in the synthesis of these highly
active neurosteroids from cholesterol within the brain,
they appear to have the capacity to play a role in their
local metabolism and elimination, as well as in the
local inactivation of peripherally derived steroids. Con-
sequently, any fluctuation in levels of brain CYPs
through induction or suppression by xenobiotics or by
endogenous substances such as steroid hormones,72,165

may have a modulatory effect on local brain neuro-
steroid levels and result in changes in brain function
(e.g., memory, learning or cognition) or in the develop-
ment of neurological disorders or neuropathologies.

Summary

Most CYP subfamilies have been identified in brain,
but there is much more information available on the
distribution and metabolic activity of CYP subfamilies
in brain of rodents than in humans, and what we do
know still lags far behind our knowledge of hepatic
CYPs. With the constant acquisition of data on the
genetics, molecular structure and metabolic capacity of
brain CYPs, we are increasingly able to investigate
their role in the brain and the possible consequences of
altered local metabolism. However, at this stage, the
contribution of brain CYPs to local metabolism of
drugs, toxins and endogenous compounds is still spec-
ulative, as is the role for these CYPs in modulating
brain function and in the development of brain dis-
eases. Much investigative work remains to be done to
firmly establish the links between the presence of CYPs
in brain, their function in this highly heterogeneous
and complex organ and the consequences on overall
brain function and health.
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